«Mi rappresento il vasto recinto delle scienze come una grande estensione di terreno disseminato di luoghi oscuri e illuminati. Lo scopo delle nostre fatiche deve essere quello di estendere i confini dei luoghi illuminati, oppure di moltiplicare sul terreno i centri di luce. L’un compito è proprio del genio che crea, l’altro della perspicacia che perfeziona» Denis Diderot
I address Gödel’s Incompleteness Theorem through four stages: by revisiting Aristotle’s Principle of Non-Contradiction; by revisiting Tarski’s Metalanguage; and, in a secondary way, by revisiting Hegel’s dialectic; as well as by using Gödelian mathematics to formalize the system. In short, I change the interpretative framework of Gödel’s theorem while its calculus remains untouched. The result provides a complete and coherent system.
È una prova di consistenza e completezza del sistema.[1]
La metateoria misurante la consistenza e completezza del sistema, per sistemi abbastanza potenti da esprimere le proprietà elementari dell’aritmetica (PA – Peano Arithmetic, da Giuseppe Peano), è il Teorema di Incompletezza di Gödel. Esso risponde alla domanda: il sistema è consistente e completo? Per esso, il sistema non può essere assieme consistente e completo.
Rivisitiamo la prova gödeliana: anzitutto semplifico in tre parti il suo teorema, evidenziando gli elementi centrali a questa prova, dopodiché dichiaro l’oggetto della presente dimostrazione (lemma) e – qui mi sospendo con una integrazione matematica leggibile primo o dopo i tre teoremi – di conseguenza rivisitiamo la completezza, la coerenza e la dimostrazione. Non è il calcolo di Gödel a essere messo alla prova, ma la teoria entro cui lo interpreta.
Abstract: We reverse the Axiom of Foundation in set theory, representing how every consistent set belongs to itself, constructing an ideal set-theoretical axiomatization free from logical-mathematical paradoxes.
Keywords:set theory, logic, philosophy, unit
Introduzione
È lo svolgimento di una Teoria degli insiemi che si poggia su x∈x, sino a dimostrarlo.
Anzitutto ci concentriamo sull’Assioma di fondamento x∉x dell’assiomatizzazione di Zermelo (1908), il quale non è deducibile dagli altri assiomi del sistema, ma introdotto con un postulato intuitivo. Ciò ci permette di lavorarlo senza intaccare il restante corpus assiomatico (dell’estensione, dell’insieme vuoto, della coppia, dell’unione, della potenza, della sostituzione, dell’infinito, della scelta), sennonché, con le giuste cautele, di utilizzare e integrare questo restante corpus.
Coerentizzazione delle operazioni con zero grazie all’introduzione del calcolo sull’infinito
di > Vito j. Ceravolo
Abstract: The classical mathematics loses algebraic coherence in the operations of division with zero. With this mathematics the operations with zero want to respond consistently thanks to the introduction of calculus on infinity.
Indice: Prima Parte. Mathematica Ad Infinitum 1. Numeri fondanti. 2. Numeri. 3. Potenza di calcolo. 4. Sistema aritmetico. 5. Struttura algebrica
Seconda Parte. Dalla matematica infinita a quella naturale 6. Dal ciclo infinito alla serie naturale. 7. Costruzione insiemistica dei numeri naturali. 8. Passaggio da un’unità a un’altra
Terza Parte. Proprietà dei numeri 9. Distribuzione numeri fondanti. 10. Distribuzione numeri naturali
Quarta Parte. Retta dei numeri 11. Annullamento positivo delle moltiplicazioni con 0 e ∞. 12. Annullamento negativo delle moltiplicazioni con 0 e ∞. 13. Principio di equivalenza. 14. Retta dei numeri
Quinta Parte. Applicazioni preliminari 15. Le quattro operazioni elementari. 16. Quantità e Grandezze. 17. Contare e Misurare. 18. Razionale e Irrazionale. 19. Risultato delle operazioni elementari. 20. Fattoriali. 21. Algebra degli infiniti e degli infinitesimi. 22. Algebra dell’infinito. 23. Potenze e Radici. 24. Reciprocità fra 0 e ∞. 25. Matematica e Linguaggio
Introduzione
Conto con le dita: zero, uno, infinito.
La presente conta una elementare matematica capace di risolvere le operazioni con lo zero grazie all’introduzione del calcolo con l’infinito. Non intacca la matematica classica nelle sue operazioni ordinarie, solo in quei casi limite che riguardano – appunto – le operazioni con zero e infinito. Ed è forse questa l’impresa a cui chiama: non tanto il contare, quanto l’interpretare quello stesso contare come dato da più ampie regole.
La prova si fonda sull’assoluto Tutto 1, l’assoluto Niente 0, l’infinito ∞. Fra cui mi ritrovai nel bel mezzo di risultati insoliti, come 0/0=1, 1/0=∞, ∞/∞=1. Alcuni di questi risultati sono già noti in matematica: nel VII secolo il matematico indiano Brahmagupta cercò delle regole per utilizzare lo 0 in combinazione con le altre cifre, attribuendogli 0/0=0 e 1/0=∞. Sulle sue orme, nel XII secolo, un altro matematico indiano, Bhaskara ipotizzò 1/0=∞. Al tempo attuale il matematico americano C. Seife immagina una gemellanza fra 0 e ∞ in virtù di alcuni campi matematici in cui i due compartecipano. In tutti questi casi però, le loro ipotesi sono nulle, o parziali, dove prive di un sistema coerente per integrare 0 1 ∞ con le altre cifre nel sistema aritmetico.
Siamo al cuore del p.d.n.c., la contraddizione: cosa contraddice? cosa è contraddetto? Sopra cui l’intensa luce di Severino: «Il senso autentico della distinzione tra contraddizione (contraddirsi) e contenuto della contraddizione: è [chiamare] tale contenuto “contraddittorietà”».1 La Sua distinzione ci richiama alla forma della contraddizione, il contraddirsi, e al contenuto della contraddizione, la contraddittorietà:
Il contraddirsi è la forma della contraddizione. La forma universale con cui si configura il contraddirsi è l’enunciato 1∧¬1;
La contraddittorietà è il contenuto della contraddizione. Il contenuto sensibile/misurabile con cui si configura la contraddittorietà è la qualità/quantità nulla.
La forma del contraddirsi non ha pertanto contenuto poiché indica una contraddittorietà, cioè un contenuto nullo, quindi non indica alcun contenuto e nessun contenuto è riferibile a un enunciato contraddittorio 1∧¬1. Con Severino: il contenuto di una contraddizione (la contraddittorietà) è assolutamente inesistente,2 esiste invece la forma della contraddizione (il contraddirsi). Riecheggia Berto: «[il contraddirsi] è proprietà di enunciati – o magari di sensi di enunciati, o dei pensieri che questi enunciati esprimono ecc. Il mondo (con i suoi abitanti non linguistici e non mentali), invece, non sarebbe il tipo di cosa che può essere contraddittoria»3.
Abstract: We calculate the principle of non contradiction (p.d.n.c.) and subsequently we demonstrate it. We map his theory and shift the attention of all the logics to the p.d.n.c. Exactly, with this proof, we want to contain in a single rigor, within the p.d.n.c., all the classic and non classical logics, to conclude that all the logics are given by the p.d.n.c.
Keywords: Principle of non contradiction; Mathematics; Logic; Philosophy.
Simboli speciali: > Sfumatura (Uso questo simbolo non solo per identificare l’ambiguità della Fuzzy, ma anche uniformemente le altre sfumature che incontriamo o che potremmo incontrare e che forse non si costruiscono come la Fuzzy); u Ogni numero; * Relazione; d Determinazione o Dimostrazione.
Facciamo una passeggiata su modi originali di condurre il pensiero. La meta è giungere dove la logica classica e quella non-classica si fondono sotto il principio di non contraddizione. Quindi il loro ricondursi al medesimo assioma, il medesimo rigore a cui rispondere e, più in là, la loro possibilità di dimostrazione. Proseguiamo col trattare alcuni aspetti della verità, del linguaggio, della matematica e dell’esistenza atti a stabilizzare alcune logiche (sfumata, paraconsistente, intuizionistica, mereologica, libera, quantistica) sotto questo tertium non datur. Chiudiamo col dettaglio del codice logico.
L’articolo è un’introduzione al processo di unificazione logica, un’illustrazione dei suoi elementi portanti.
Critica filosofica: questa filosofia succede alla post-verità della nientità per mostrare la verità dell’entità, sia dell’in sé che del fenomeno, cioè la possibilità di accesso a verità universali e personali. In questo senso le forme si annoverano fra gli elementi capitali; e benché sovente la filosofia post-verità neghi la formalità per lasciar spazio al libero spirito, a questa si ricorda tosti come lo spirito, siaquel che sia (a=a), non ha certo il contenuto della materia, e di come pure la libertà esiste per date condizioni. Ossia anche i filosofi post-verità assumono forme nei loro discorsi, alcune addirittura ricorsive: non di meno farò io in questa breve passeggiata, benché qui il sottofondo filosofico sia di verità e senso, quindi scevro da contraddizioni formali e materiali. Continua a leggere →
TERZA PARTE – SISTEMI EXTRANATURALI E NUMERI INIMMAGINABILI
1. Sistemi extranaturali
2. Numeri inimmaginabili
3. Al confine dell’ultimo numero
CONCLUSIONE
TERZA PARTE
SISTEMI EXTRANATURALI E NUMERI INIMMAGINABILI
1. Sistemi extranaturali
Abbiamo visto come tutta la natura e tutti i numeri si comportano con lo zero e l’infinito dando il medesimo risultato, come se tutti fossero la stessa cosa, lo stesso numero, come se tutti nei loro confronti si comportassero come fossero 1 (principio di Reductio ad 1).
Il fatto che la natura ricorra alla cardinalità ad infinitum dell’insieme 1 per rapportarsi con lo 0 e l’∞, i quali risultano indifferenti alle differenze del mondo naturale; ciò matematicamente lo interpretiamo con questo significato: i numeri fondanti 0 e ∞ non fanno parte dell’insieme 1 dei numeri naturali; ed effettivamente il Niente non esiste in natura (se non in forma parziale come niente relativo, cioè come principio regolatore fra positivo e negativo o come «simbolico congegno posizionabile» che consente al nostro sistema in base 10 di funzionare) né l’infinito può essere percepito in una natura limitata (se non in forma parziale come «infinito potenziale»). Sicché ogni naturale nel relazionarsi con lo 0 e l’∞ si sta relazionando con qualcosa posto fuori dall’unità del proprio insieme naturale. Questa la chiamo «relazione ad infinitum extranaturale», quella operazione per cui, indifferentemente alle differenze naturali, il risultato non cambia. Continua a leggere →
Capitolo Primo: Portali al mondo naturale
1. Luogo della naturalizzazione dei numeri fondanti
2. Porta d’accesso ai numeri naturali da quelli fondanti
3. Le parti della natura
Capitolo Secondo: Costruzione del mondo naturale
1. Costruzione dell’unità
2. Costruzione insiemistica dei numeri naturali dai numeri fondanti
3. Costruzione seriale dei numeri naturali dai numeri fondanti
Capitolo Terzo: Naturalizzazione dell’aritmetica fondante
1. Operazioni assolute
2. Operazioni fra numeri naturali e fondanti
3. Operazioni fra numeri naturali
4. Naturalizzazione dell’aritmetica trina
SECONDA PARTE
FONDAZIONE DELLA NATURA
Capitolo Primo
PORTALI AL MONDO NATURALE
0, 1 , ∞
1. Luogo della naturalizzazione dei numeri fondanti
Trattati i caratteri generali dell’aritmetica trina, il nostro compito è adesso mostrare il passaggio dai numeri fondanti a quelli naturali. Qui spieghiamo “dove” ciò avviene. Nel successivo capitolo spieghiamo “come” avviene. Incominciamo ricordando il valore dei fondanti:
0 è l’assenza di valore, qualcosa che non inizia;
1 è la totalità (insieme) di ogni valore (numero), qualcosa che non finisce;
∞ è il limite fra il Niente è il Tutto, lo scarto che li separa e il confine che li unisce, ciò che non appartiene solo all’1 o solo allo 0, poiché proprio di entrambi assieme.
Da queste definizioni, possiamo escludere l’infinito in atto dalle possibili manifestazioni naturali: se ogni nostra percezione è possibile all’interno della nostra finita sensibilità, allora tale finitezza esclude l’infinito in atto dalle possibili manifestazioni naturali a noi sensibili.[1] Continuiamo escludendo lo zero assoluto dalle possibili manifestazioni naturali: se il vuoto pneumatico è concettualmente e fisicamente impossibile per l’impossibilità di ottenere l’assenza di tutto, allora la sua manifestazione naturale è impossibile. Concludiamo affermando l’uno come luogo dove la natura può manifestarsi: se ogni manifestazione naturale è possibile solo per l’unità (individuale) per cui è tale, «non essendo possibile che possa esistere un essere senza l’unità per cui è tale»,[2]allora ogni natura nella sua unità si manifesta nel Tutto (uno).
Abbiamo così la «caratterizzazioni del Tutto come luogo in cui la natura può compiersi», predicato di ogni unità naturale. Continua a leggere →
Abstract:Nella prima parte, questa matematica vuole rispondere coerentemente anche ai calcoli sullo 0 e l’∞, alla forma algebrica e al mondo extramatematico. Chiarita questa matematica, nella seconda parte la si usa per la costruzione insiemistica dei numeri naturali e successivamente la si naturalizza. In fine, nella terza parte, si definiscono i sistemi extranaturali e i numeri inimmaginabili.
Indice:
PRIMA PARTE – MATEMATICA TRINA
Capitolo Primo: Il perché del bisogno di una nuova matematica
1. Obiettivo
2. Problema storico
3. Problema formale
4. Problema materiale
Capitolo Secondo: Numeri fondanti
1. Valore dei numeri fondanti
2. Ciclicità dei numeri fondanti
Capitolo Terzo: Aritmetica elementare
1. Aritmetica dei numeri fondanti
2. Addizione e sottrazione dei numeri fondanti
3. Moltiplicazione e divisione dei numeri fondanti
Capitolo Quarto: Definizioni, proprietà, retta dei numeri e operazioni
1. Definizione aritmetica dei numeri fondanti
2. Proprietà algebriche dei numeri fondanti
3. Retta dei numeri fondanti
4. Operazioni elementari fondanti
Non neghiamo che siano veri i principi stabiliti dai matematici e che sia chiaro e incontestabile il loro metodo nel trarre deduzioni da quei principi; ma riteniamo che possano esserci certe massime erronee più estese che non sia l’oggetto delle matematiche le quali perciò non vengono espressamente menzionate benché vengano tacitamente supposte in tutto il processo di questa scienza, e riteniamo che i cattivi effetti di questi errori nascosti e non esaminati si diffondano per tutti i rami delle matematiche. Per dirlo chiaramente, sospettiamo che i matematici siano implicati non meno profondamente degli altri uomini negli errori che sorgono dalla dottrina delle idee […]. G. Berkeley
PRIMA PARTE
MATEMATICA TRINA
Capitolo Primo
IL PERCHÉ DEL BISOGNO DI UNA NUOVA MATEMATICA
0, 1 , ∞
1. Obiettivo
L’articolo mira a una matematica capace di contenere coerentemente anche le operazioni coi numeri 0 e ∞ in rapporto alle unità 1 naturali e derivati. Definito tale rapporto triadico 0, 1, ∞, lo si usa per la costruzione dei numeri naturali e conseguentemente della matematica tutta. Il risultato non elude le già note operazioni sui numeri, salvo superare l’incoerenza algebrica nel calcolo con lo 0 e introdurre il calcolo sul ∞. Detto altrimenti: Continua a leggere →
La libertà, per essere completa,
deve recare con sé non soltanto la mera
assenza di repressione, ma anche la
possibilità di autorganizzazione.
H. Tawney[1]
Abstract: Applicazioni preliminari della libertà ai rapporti sociali.
Indice:
PRIMA PARTE – COMPOSIZIONE DELLA SOCIETÀ LIBERA
1. Dall’universo alla società. 2. Libertà deontologica e scontri. 3. Libertà positiva e negativa. 4. Libertà sociale. 5. Libertà personale. 6. Libertà matematica (facoltativo).
SECONDA PARTE – MOVIMENTI DELLA SOCIETÀ LIBERA
7. Tendenze della società libera. 8. Limiti positivi della società libera. 9. Limiti negativi della società libera. 10. Limiti della società libera. 11. Doli e mali della società libera. 12. Vantaggi e beni della società libera.
TERZA PARTE – VITA E PRATICHE DELLA SOCIETÀ LIBERA 13. Libertà e bene. 14. Libertà economica. 15. Libertà etica. 16. Libertà tecnica. 17. Libertà clandestina. 18. Conservazione della libertà individuale e collettiva.
QUARTA PARTE – DIRITTO E NATURA DELLA SOCIETÀ LIBERA 19. Libertà macroindividuale. 20. Libertà politica. 21. Libertà e diritto. 22. Libertà e schiavitù. 23. Libertà naturale. 24. Libertà universale.